diff options
author | rgl <devnull@localhost> | 2020-02-03 22:42:28 +0100 |
---|---|---|
committer | rgl <devnull@localhost> | 2020-02-03 22:42:28 +0100 |
commit | 0373255087377122eeb10e006ffb8aa1b57e611c (patch) | |
tree | 33a4fafa4996fc2efa205b2973622c3fbd27f368 /libgeometry/doc/libgeometry.ms | |
download | 3dee-0373255087377122eeb10e006ffb8aa1b57e611c.tar.gz 3dee-0373255087377122eeb10e006ffb8aa1b57e611c.tar.bz2 3dee-0373255087377122eeb10e006ffb8aa1b57e611c.zip |
after a year or so of work, i dare create a proper repo.
Diffstat (limited to 'libgeometry/doc/libgeometry.ms')
-rw-r--r-- | libgeometry/doc/libgeometry.ms | 429 |
1 files changed, 429 insertions, 0 deletions
diff --git a/libgeometry/doc/libgeometry.ms b/libgeometry/doc/libgeometry.ms new file mode 100644 index 0000000..47c8d94 --- /dev/null +++ b/libgeometry/doc/libgeometry.ms @@ -0,0 +1,429 @@ +.TL +libgeometry +.AU +Rodrigo G. López +.sp +rgl@antares-labs.eu +.AI +Antares Telecom Laboratories +Albatera, Alicante +.FS +ACHTUNG! this is a +.B "WORK IN PROGRESS" +.FE +.SH +Introduction +.PP +.I Libgeometry is a computational geometry library that provides all +the utilities anybody working with graphics or scientific simulations +could need. +.NH 1 +Data Structures +.NH 2 +Point2 +.P1 +struct Point2 { + double x, y, w; +}; +.P2 +.PP +.I Point2 +represents a point in two-dimensional projective space, which itself +is an extension of the two-dimensional euclidean space that allows us +to work with vectors and compose affine transformations in a friendly +manner. A point +.EQ +gfont roman +(x, y, w) +.EN +made out of homogenous coordinates +.I x , +.I y , +and +.I w , +yields a point with cartesian coordinates +.EQ +(x/w, y/w) . +.EN +.NH 2 +Point3 +.P1 +struct Point3 { + double x, y, z, w; +}; +.P2 +.PP +.I Point3 +is a point in three-dimensional projective space. +.NH 2 +Matrix +.P1 +typedef double Matrix[3][3]; +.P2 +.PP +.I Matrix +represents a 3x3 matrix, thought to compose affine transformations to +apply to homogeneous 2D points. +.NH 2 +Matrix3 +.P1 +typedef double Matrix3[4][4]; +.P2 +.PP +.I Matrix3 +represents a 4x4 matrix, thought to compose affine transformations to +apply to homogeneous 3D points. +.NH 2 +Quaternion +.P1 +struct Quaternion { + double r, i, j, k; +}; +.P2 +.PP +.I Quaternions +are a numbering system that extends the complex numbers up to +four-dimensional space, and are used to apply rotations and model +mechanical interactions in 3D space. Their main advantages with +respect to their matrix relatives are increased computational and +storage performance and gimbal lock avoidance. +.NH 2 +RFrame +.P1 +struct RFrame { + Point2 p; + Point2 bx, by; +}; +.P2 +.PP +A reference frame (or frame of reference) is +.NH 2 +RFrame3 +.P1 +struct RFrame3 { + Point3 p; + Point3 bx, by, bz; +}; +.P2 +.PP +A reference frame (or frame of reference) is +.NH 1 +Algorithms +.NH 2 +Point2 +.SH +Addition +.P1 +Point2 addpt2(Point2 a, Point2 b) +.P2 +.EQ +a + b ~=~ left ( x sub a + x sub b ,~ y sub a + y sub b ,~ w sub a + w sub b right ) +.EN +.SH +Substraction +.P1 +Point2 subpt2(Point2 a, Point2 b) +.P2 +.EQ +a - b ~=~ left ( x sub a - x sub b ,~ y sub a - y sub b ,~ w sub a - w sub b right ) +.EN +.SH +Multiplication +.P1 +Point2 mulpt2(Point2 p, double s) +.P2 +.EQ +p * s ~=~ left ( xs,~ ys,~ ws right ) +.EN +.SH +Division +.P1 +Point2 divpt2(Point2 p, double s) +.P2 +.EQ +p / s ~=~ left ( x over s ,~ y over s ,~ w over s right ) +.EN +.SH +Vector Dot Product +.P1 +double dotvec2(Point2 a, Point2 b) +.P2 +.EQ +a vec ~•~ b vec ~=~ x sub a x sub b + y sub a y sub b +.EN +.SH +Vector Magnitude/Length +.P1 +double vec2len(Point2 v) +.P2 +.EQ +| v vec | ~=~ sqrt { x sup 2 + y sup 2 } +.EN +.SH +Vector Normalization +.P1 +Point2 normvec2(Point2 v) +.P2 +.EQ +n vec ~=~ left ( x over {| v vec |},~ y over {| v vec |} right ) +.EN +.NH 2 +Point3 +.SH +Addition +.P1 +Point3 addpt3(Point3 a, Point3 b) +.P2 +.EQ +a + b ~=~ left ( x sub a + x sub b ,~ y sub a + y sub b ,~ z sub a + z sub b ,~ w sub a + w sub b right ) +.EN +.SH +Substraction +.P1 +Point3 subpt3(Point3 a, Point3 b) +.P2 +.EQ +a - b ~=~ left ( x sub a - x sub b ,~ y sub a - y sub b ,~ z sub a - z sub b ,~ w sub a - w sub b right ) +.EN +.SH +Multiplication +.P1 +Point3 mulpt3(Point3 p, double s) +.P2 +.EQ +p * s ~=~ left ( xs,~ ys,~ zs,~ ws right ) +.EN +.SH +Division +.P1 +Point3 divpt3(Point3 p, double s) +.P2 +.EQ +p / s ~=~ left ( x over s ,~ y over s ,~ z over s ,~ w over s right ) +.EN +.SH +Vector Dot Product +.P1 +double dotvec3(Point3 a, Point3 b) +.P2 +.EQ +a vec ~•~ b vec ~=~ x sub a x sub b + y sub a y sub b + z sub a z sub b +.EN +.SH +Vector Cross Product +.P1 +double crossvec3(Point3 a, Point3 b) +.P2 +.EQ +a vec ~×~ b vec ~=~ left ( y sub a z sub b - z sub a y sub b ,~ + z sub a x sub b - x sub a z sub b ,~ + x sub a y sub b - y sub a x sub b right ) +.EN +.SH +Vector Magnitude/Length +.P1 +double vec3len(Point3 v) +.P2 +.EQ +| v vec | ~=~ sqrt { x sup 2 + y sup 2 + z sup 2 } +.EN +.SH +Vector Normalization +.P1 +Point3 normvec3(Point3 v) +.P2 +.EQ +n vec ~=~ left ( x over {| v vec |},~ y over {| v vec |},~ z over {| v vec |} right ) +.EN +.NH 2 +Matrix +.SH +Addition +.P1 +void addm(Matrix A, Matrix B) +.P2 +.EQ +( bold A + bold B ) sub {i,j} ~=~ bold A sub {i,j} + bold B sub {i,j} +.EN +.SH +Substraction +.P1 +void subm(Matrix A, Matrix B) +.P2 +.EQ +( bold A - bold B ) sub {i,j} ~=~ bold A sub {i,j} - bold B sub {i,j} +.EN +.SH +Multiplication +.P1 +void mulm(Matrix A, Matrix B) +.P2 +.EQ +left [ bold A bold B right ] sub {i,j} ~=~ sum from {k = 0} to 3-1 bold A sub {i,k} bold B sub {k,j} +.EN +.SH +Transpose +.P1 +void transposem(Matrix M) +.P2 +.EQ +( bold M sup T ) sub {i,j} ~=~ bold A sub {j,i} +.EN +.SH +Identity +.P1 +void identity(Matrix M) +.P2 +.EQ +bold M ~=~ left [ rpile { + 1 ~ 0 ~ 0 +above 0 ~ 1 ~ 0 +above 0 ~ 0 ~ 1 +} right ] +.EN +.SH +Determinant +.P1 +double detm(Matrix M) +.P2 +.EQ +det( bold M ) ~=~ lpile { + m sub 00 ( m sub 11 m sub 22 - m sub 12 m sub 21 ) + +above m sub 01 ( m sub 12 m sub 20 - m sub 10 m sub 22 ) + +above m sub 02 ( m sub 10 m sub 21 - m sub 11 m sub 20 ) +} +.EN +.NH 2 +Matrix3 +.SH +Addition +.P1 +void addm3(Matrix3 A, Matrix3 B) +.P2 +.EQ +( bold A + bold B ) sub {i,j} ~=~ bold A sub {i,j} + bold B sub {i,j} +.EN +.SH +Substraction +.P1 +void subm3(Matrix3 A, Matrix3 B) +.P2 +.EQ +( bold A - bold B ) sub {i,j} ~=~ bold A sub {i,j} - bold B sub {i,j} +.EN +.SH +Multiplication +.P1 +void mulm3(Matrix3 A, Matrix3 B) +.P2 +.EQ +left [ bold A bold B right ] sub {i,j} ~=~ sum from {k = 0} to 4-1 bold A sub {i,k} bold B sub {k,j} +.EN +.SH +Transpose +.P1 +void transposem3(Matrix3 M) +.P2 +.EQ +( bold M sup T ) sub {i,j} ~=~ bold A sub {j,i} +.EN +.SH +Identity +.P1 +void identity3(Matrix3 M) +.P2 +.EQ +bold M ~=~ left [ rpile { + 1 ~ 0 ~ 0 ~ 0 +above 0 ~ 1 ~ 0 ~ 0 +above 0 ~ 0 ~ 1 ~ 0 +above 0 ~ 0 ~ 0 ~ 1 +} right ] +.EN +.SH +Determinant +.P1 +double detm3(Matrix3 M) +.P2 +.EQ +det( bold M ) ~=~ rpile { + m sub 00 ( m sub 11 ( m sub 22 m sub 33 - m sub 23 m sub 32 ) + + m sub 12 ( m sub 23 m sub 31 - m sub 21 m sub 33 ) + + m sub 13 ( m sub 21 m sub 32 - m sub 22 m sub 31 ) ) +above -m sub 01 ( m sub 10 ( m sub 22 m sub 33 - m sub 23 m sub 32 ) + + m sub 12 ( m sub 23 m sub 30 - m sub 20 m sub 33 ) + + m sub 13 ( m sub 20 m sub 32 - m sub 22 m sub 30 ) ) +above +m sub 02 ( m sub 10 ( m sub 21 m sub 33 - m sub 23 m sub 31 ) + + m sub 11 ( m sub 23 m sub 30 - m sub 20 m sub 33 ) + + m sub 13 ( m sub 20 m sub 31 - m sub 21 m sub 30 ) ) +above -m sub 03 ( m sub 10 ( m sub 21 m sub 32 - m sub 22 m sub 31 ) + + m sub 11 ( m sub 22 m sub 30 - m sub 20 m sub 32 ) + + m sub 12 ( m sub 20 m sub 31 - m sub 21 m sub 30 ) ) +} +.EN +.NH 2 +Quaternion +.SH +Addition +.P1 +Quaternion addq(Quaternion q, Quaternion r) +.P2 +.EQ +q + r ~=~ ( r sub q + r sub r ,~ i sub q + i sub r ,~ j sub q + j sub r ,~ k sub q + k sub r ) +.EN +.SH +Substraction +.P1 +Quaternion subq(Quaternion q, Quaternion r) +.P2 +.EQ +q - r ~=~ ( r sub q - r sub r ,~ i sub q - i sub r ,~ j sub q - j sub r ,~ k sub q - k sub r ) +.EN +.SH +Multiplication +.P1 +Quaternion mulq(Quaternion q, Quaternion r) +.P2 +.EQ +q ~=~ [ r sub q ,~ v vec sub q ] +r ~=~ [ r sub r ,~ v vec sub r ] +qr ~=~ [ r sub q r sub r - v vec sub q • v vec sub r ,~ v vec sub r r sub q + v vec sub q r sub r + v vec sub q X v vec sub r ] +.EN +.SH +Scalar Multiplication +.P1 +Quaternion smulq(Quaternion q, double s) +.P2 +.EQ +qs ~=~ [ r sub q s ,~ i sub q s ,~ j sub q s ,~ k sub q s ] +.EN +.SH +Inverse +.P1 +Quaternion invq(Quaternion q) +.P2 +.EQ +q sup -1 ~=~ left ( r over {| q | sup 2} ,~ -i over {| q | sup 2} ,~ -j over {| q | sup 2} ,~ -k over {| q | sup 2} right ) +.EN +.SH +Magnitude/Length +.P1 +double qlen(Quaternion q) +.P2 +.EQ +| q | ~=~ sqrt { r sup 2 + i sup 2 + j sup 2 + k sup 2 } +.EN +.NH 2 +RFrame +.SH +Change of reference +.P1 +Point2 rframexform(Point2 p, RFrame rf) +.P2 +.NH 2 +RFrame3 +.SH +Change of reference +.P1 +Point3 rframexform3(Point3 p, RFrame3 rf) +.P2 |