From e77a34629060abfad8e463efda0c3ffc54379793 Mon Sep 17 00:00:00 2001 From: rodri Date: Fri, 17 Apr 2020 11:37:10 +0000 Subject: roll everything back. --- libgeometry/doc/libgeometry.ms | 429 ----------------------------------------- 1 file changed, 429 deletions(-) delete mode 100644 libgeometry/doc/libgeometry.ms (limited to 'libgeometry/doc/libgeometry.ms') diff --git a/libgeometry/doc/libgeometry.ms b/libgeometry/doc/libgeometry.ms deleted file mode 100644 index 47c8d94..0000000 --- a/libgeometry/doc/libgeometry.ms +++ /dev/null @@ -1,429 +0,0 @@ -.TL -libgeometry -.AU -Rodrigo G. López -.sp -rgl@antares-labs.eu -.AI -Antares Telecom Laboratories -Albatera, Alicante -.FS -ACHTUNG! this is a -.B "WORK IN PROGRESS" -.FE -.SH -Introduction -.PP -.I Libgeometry is a computational geometry library that provides all -the utilities anybody working with graphics or scientific simulations -could need. -.NH 1 -Data Structures -.NH 2 -Point2 -.P1 -struct Point2 { - double x, y, w; -}; -.P2 -.PP -.I Point2 -represents a point in two-dimensional projective space, which itself -is an extension of the two-dimensional euclidean space that allows us -to work with vectors and compose affine transformations in a friendly -manner. A point -.EQ -gfont roman -(x, y, w) -.EN -made out of homogenous coordinates -.I x , -.I y , -and -.I w , -yields a point with cartesian coordinates -.EQ -(x/w, y/w) . -.EN -.NH 2 -Point3 -.P1 -struct Point3 { - double x, y, z, w; -}; -.P2 -.PP -.I Point3 -is a point in three-dimensional projective space. -.NH 2 -Matrix -.P1 -typedef double Matrix[3][3]; -.P2 -.PP -.I Matrix -represents a 3x3 matrix, thought to compose affine transformations to -apply to homogeneous 2D points. -.NH 2 -Matrix3 -.P1 -typedef double Matrix3[4][4]; -.P2 -.PP -.I Matrix3 -represents a 4x4 matrix, thought to compose affine transformations to -apply to homogeneous 3D points. -.NH 2 -Quaternion -.P1 -struct Quaternion { - double r, i, j, k; -}; -.P2 -.PP -.I Quaternions -are a numbering system that extends the complex numbers up to -four-dimensional space, and are used to apply rotations and model -mechanical interactions in 3D space. Their main advantages with -respect to their matrix relatives are increased computational and -storage performance and gimbal lock avoidance. -.NH 2 -RFrame -.P1 -struct RFrame { - Point2 p; - Point2 bx, by; -}; -.P2 -.PP -A reference frame (or frame of reference) is -.NH 2 -RFrame3 -.P1 -struct RFrame3 { - Point3 p; - Point3 bx, by, bz; -}; -.P2 -.PP -A reference frame (or frame of reference) is -.NH 1 -Algorithms -.NH 2 -Point2 -.SH -Addition -.P1 -Point2 addpt2(Point2 a, Point2 b) -.P2 -.EQ -a + b ~=~ left ( x sub a + x sub b ,~ y sub a + y sub b ,~ w sub a + w sub b right ) -.EN -.SH -Substraction -.P1 -Point2 subpt2(Point2 a, Point2 b) -.P2 -.EQ -a - b ~=~ left ( x sub a - x sub b ,~ y sub a - y sub b ,~ w sub a - w sub b right ) -.EN -.SH -Multiplication -.P1 -Point2 mulpt2(Point2 p, double s) -.P2 -.EQ -p * s ~=~ left ( xs,~ ys,~ ws right ) -.EN -.SH -Division -.P1 -Point2 divpt2(Point2 p, double s) -.P2 -.EQ -p / s ~=~ left ( x over s ,~ y over s ,~ w over s right ) -.EN -.SH -Vector Dot Product -.P1 -double dotvec2(Point2 a, Point2 b) -.P2 -.EQ -a vec ~•~ b vec ~=~ x sub a x sub b + y sub a y sub b -.EN -.SH -Vector Magnitude/Length -.P1 -double vec2len(Point2 v) -.P2 -.EQ -| v vec | ~=~ sqrt { x sup 2 + y sup 2 } -.EN -.SH -Vector Normalization -.P1 -Point2 normvec2(Point2 v) -.P2 -.EQ -n vec ~=~ left ( x over {| v vec |},~ y over {| v vec |} right ) -.EN -.NH 2 -Point3 -.SH -Addition -.P1 -Point3 addpt3(Point3 a, Point3 b) -.P2 -.EQ -a + b ~=~ left ( x sub a + x sub b ,~ y sub a + y sub b ,~ z sub a + z sub b ,~ w sub a + w sub b right ) -.EN -.SH -Substraction -.P1 -Point3 subpt3(Point3 a, Point3 b) -.P2 -.EQ -a - b ~=~ left ( x sub a - x sub b ,~ y sub a - y sub b ,~ z sub a - z sub b ,~ w sub a - w sub b right ) -.EN -.SH -Multiplication -.P1 -Point3 mulpt3(Point3 p, double s) -.P2 -.EQ -p * s ~=~ left ( xs,~ ys,~ zs,~ ws right ) -.EN -.SH -Division -.P1 -Point3 divpt3(Point3 p, double s) -.P2 -.EQ -p / s ~=~ left ( x over s ,~ y over s ,~ z over s ,~ w over s right ) -.EN -.SH -Vector Dot Product -.P1 -double dotvec3(Point3 a, Point3 b) -.P2 -.EQ -a vec ~•~ b vec ~=~ x sub a x sub b + y sub a y sub b + z sub a z sub b -.EN -.SH -Vector Cross Product -.P1 -double crossvec3(Point3 a, Point3 b) -.P2 -.EQ -a vec ~×~ b vec ~=~ left ( y sub a z sub b - z sub a y sub b ,~ - z sub a x sub b - x sub a z sub b ,~ - x sub a y sub b - y sub a x sub b right ) -.EN -.SH -Vector Magnitude/Length -.P1 -double vec3len(Point3 v) -.P2 -.EQ -| v vec | ~=~ sqrt { x sup 2 + y sup 2 + z sup 2 } -.EN -.SH -Vector Normalization -.P1 -Point3 normvec3(Point3 v) -.P2 -.EQ -n vec ~=~ left ( x over {| v vec |},~ y over {| v vec |},~ z over {| v vec |} right ) -.EN -.NH 2 -Matrix -.SH -Addition -.P1 -void addm(Matrix A, Matrix B) -.P2 -.EQ -( bold A + bold B ) sub {i,j} ~=~ bold A sub {i,j} + bold B sub {i,j} -.EN -.SH -Substraction -.P1 -void subm(Matrix A, Matrix B) -.P2 -.EQ -( bold A - bold B ) sub {i,j} ~=~ bold A sub {i,j} - bold B sub {i,j} -.EN -.SH -Multiplication -.P1 -void mulm(Matrix A, Matrix B) -.P2 -.EQ -left [ bold A bold B right ] sub {i,j} ~=~ sum from {k = 0} to 3-1 bold A sub {i,k} bold B sub {k,j} -.EN -.SH -Transpose -.P1 -void transposem(Matrix M) -.P2 -.EQ -( bold M sup T ) sub {i,j} ~=~ bold A sub {j,i} -.EN -.SH -Identity -.P1 -void identity(Matrix M) -.P2 -.EQ -bold M ~=~ left [ rpile { - 1 ~ 0 ~ 0 -above 0 ~ 1 ~ 0 -above 0 ~ 0 ~ 1 -} right ] -.EN -.SH -Determinant -.P1 -double detm(Matrix M) -.P2 -.EQ -det( bold M ) ~=~ lpile { - m sub 00 ( m sub 11 m sub 22 - m sub 12 m sub 21 ) + -above m sub 01 ( m sub 12 m sub 20 - m sub 10 m sub 22 ) + -above m sub 02 ( m sub 10 m sub 21 - m sub 11 m sub 20 ) -} -.EN -.NH 2 -Matrix3 -.SH -Addition -.P1 -void addm3(Matrix3 A, Matrix3 B) -.P2 -.EQ -( bold A + bold B ) sub {i,j} ~=~ bold A sub {i,j} + bold B sub {i,j} -.EN -.SH -Substraction -.P1 -void subm3(Matrix3 A, Matrix3 B) -.P2 -.EQ -( bold A - bold B ) sub {i,j} ~=~ bold A sub {i,j} - bold B sub {i,j} -.EN -.SH -Multiplication -.P1 -void mulm3(Matrix3 A, Matrix3 B) -.P2 -.EQ -left [ bold A bold B right ] sub {i,j} ~=~ sum from {k = 0} to 4-1 bold A sub {i,k} bold B sub {k,j} -.EN -.SH -Transpose -.P1 -void transposem3(Matrix3 M) -.P2 -.EQ -( bold M sup T ) sub {i,j} ~=~ bold A sub {j,i} -.EN -.SH -Identity -.P1 -void identity3(Matrix3 M) -.P2 -.EQ -bold M ~=~ left [ rpile { - 1 ~ 0 ~ 0 ~ 0 -above 0 ~ 1 ~ 0 ~ 0 -above 0 ~ 0 ~ 1 ~ 0 -above 0 ~ 0 ~ 0 ~ 1 -} right ] -.EN -.SH -Determinant -.P1 -double detm3(Matrix3 M) -.P2 -.EQ -det( bold M ) ~=~ rpile { - m sub 00 ( m sub 11 ( m sub 22 m sub 33 - m sub 23 m sub 32 ) + - m sub 12 ( m sub 23 m sub 31 - m sub 21 m sub 33 ) + - m sub 13 ( m sub 21 m sub 32 - m sub 22 m sub 31 ) ) -above -m sub 01 ( m sub 10 ( m sub 22 m sub 33 - m sub 23 m sub 32 ) + - m sub 12 ( m sub 23 m sub 30 - m sub 20 m sub 33 ) + - m sub 13 ( m sub 20 m sub 32 - m sub 22 m sub 30 ) ) -above +m sub 02 ( m sub 10 ( m sub 21 m sub 33 - m sub 23 m sub 31 ) + - m sub 11 ( m sub 23 m sub 30 - m sub 20 m sub 33 ) + - m sub 13 ( m sub 20 m sub 31 - m sub 21 m sub 30 ) ) -above -m sub 03 ( m sub 10 ( m sub 21 m sub 32 - m sub 22 m sub 31 ) + - m sub 11 ( m sub 22 m sub 30 - m sub 20 m sub 32 ) + - m sub 12 ( m sub 20 m sub 31 - m sub 21 m sub 30 ) ) -} -.EN -.NH 2 -Quaternion -.SH -Addition -.P1 -Quaternion addq(Quaternion q, Quaternion r) -.P2 -.EQ -q + r ~=~ ( r sub q + r sub r ,~ i sub q + i sub r ,~ j sub q + j sub r ,~ k sub q + k sub r ) -.EN -.SH -Substraction -.P1 -Quaternion subq(Quaternion q, Quaternion r) -.P2 -.EQ -q - r ~=~ ( r sub q - r sub r ,~ i sub q - i sub r ,~ j sub q - j sub r ,~ k sub q - k sub r ) -.EN -.SH -Multiplication -.P1 -Quaternion mulq(Quaternion q, Quaternion r) -.P2 -.EQ -q ~=~ [ r sub q ,~ v vec sub q ] -r ~=~ [ r sub r ,~ v vec sub r ] -qr ~=~ [ r sub q r sub r - v vec sub q • v vec sub r ,~ v vec sub r r sub q + v vec sub q r sub r + v vec sub q X v vec sub r ] -.EN -.SH -Scalar Multiplication -.P1 -Quaternion smulq(Quaternion q, double s) -.P2 -.EQ -qs ~=~ [ r sub q s ,~ i sub q s ,~ j sub q s ,~ k sub q s ] -.EN -.SH -Inverse -.P1 -Quaternion invq(Quaternion q) -.P2 -.EQ -q sup -1 ~=~ left ( r over {| q | sup 2} ,~ -i over {| q | sup 2} ,~ -j over {| q | sup 2} ,~ -k over {| q | sup 2} right ) -.EN -.SH -Magnitude/Length -.P1 -double qlen(Quaternion q) -.P2 -.EQ -| q | ~=~ sqrt { r sup 2 + i sup 2 + j sup 2 + k sup 2 } -.EN -.NH 2 -RFrame -.SH -Change of reference -.P1 -Point2 rframexform(Point2 p, RFrame rf) -.P2 -.NH 2 -RFrame3 -.SH -Change of reference -.P1 -Point3 rframexform3(Point3 p, RFrame3 rf) -.P2 -- cgit v1.2.3