
libgraphics: Design and Implementation

Rodrigo G. López
rgl@antares−labs.eu

ABSTRACT

Libgraphics is a 3D computer graphics library that provides a way to
set up a scene, fill it up with a bunch of models (with their own meshes
and materials), lights and cameras, and start taking pictures at the user
request. It implements a fully concurrent retained mode software ren
derer, with support for vertex and fragment/pixel shaders written in C
(not GPU ones, at least for now), and featuring a z-buffer, front- and
back-face culling, textures and skyboxes, directional and punctual lights,
tangent-space normal mapping, among other things.

Introduction

Write the intro last.

1. The scene

struct Scene
{

char *name;
Entity ents;
ulong nents;
Cubemap *skybox;

void (*addent)(Scene*, Entity*);
void (*delent)(Scene*, Entity*);

};

A scene is a container, represented as a graph, that hosts the entities that make up
the world. Each of these entities has a model made out of a series of meshes, which in
turn are made out of geometric primitives (only points, lines and triangles are sup
ported.) Each model also stores a list of materials.

September 9, 2024



 2 

Scene

Entity

Model

Mesh

Primitive

Material

Figure 1: The scene graph.

1.1. Entities

struct Entity
{

RFrame3;
char *name;
Model *mdl;

Entity *prev, *next;
};

Entities represent physical objects in the scene.

1.2. Models

struct Model
{

Primitive *prims;
ulong nprims;
Material *materials;
ulong nmaterials;

};

1.3. Meshes

1.4. Primitives

struct Primitive
{

int type;
Vertex v[3];
Material *mtl;
Point3 tangent; /* used for normal mapping */

};

1.5. Materials

September 9, 2024



 3 

struct Material
{

char *name;
Color ambient;
Color diffuse;
Color specular;
double shininess;
Texture *diffusemap;
Texture *normalmap;

};

2. Cameras

struct Camera
{

RFrame3; /* VCS */
Viewport *view;
Scene *scene;
Renderer *rctl;
double fov; /* vertical FOV */
struct {

double n, f; /* near and far clipping planes */
} clip;
Matrix3 proj; /* VCS to clip space xform */
Projection projtype;
ulong clearcolor;
int cullmode;
int enableblend;
int enabledepth;
int enableAbuff;

};

3. The renderer

The renderer is the core of the library. It follows a retained mode model, which means
that the user won�t get a picture until the entire scene has been rendered. Thanks to
this we can apply optimizations to make better use of the pipeline, clear and swap the
framebuffers, and�in the future�run distributed rendering jobs, all without their inter
vention; they only need to concern themselves with shooting and �developing� a camera.

It�s implemented as a tree of concurrent processes connected by buffered
Channels�as seen in Figure 2�, spawned with a call to initgraphics, each rep
resenting a stage of the pipeline:

September 9, 2024



 4 

Renderjob renderer entityproc

tiler 1

tiler 2

&

tiler n

rasterizer 1

rasterizer 2

&

rasterizer n

Figure 2: The rendering graph for a 2n processor machine.

3.1. renderer

The renderer process, the root of the tree, waits on a channel for a
Renderjob sent by another user process, specifying a framebuffer, a scene, a camera
and a shader table. It walks the scene and sends each Entity individually to the enti
typroc.

3.2. entityproc

The entityproc receives an entity and splits its geometry equitatively among the
tilers, sending a batch for each of them to process.

3.3. tilers

Next, each tiler gets to work on their subset of the geometry, potentially in
parallel�see Figure 3. They walk the list of primitives, then for each of them apply the
vertex shader to its vertices (which expects clip space coordinates in return), perform
frustum culling and clipping, back-face culling, and then project them into the viewport
to obtain their screen space coordinates. Following this step, they build a bounding
box, used to allocate each primitive into a rasterization bucket, or tile, managed by one
of the rasterizers; as illustrated in Figure 4. If it spans multiple tiles, it will be copied
and sent to each of them.

September 9, 2024



 5 

tile 1

tile 2

&

tile n

Framebuf

rasterizer 1

rasterizer 2

&

rasterizer n

Figure 3: Per tile rasterizers.

3.4. rasterizers

Finally, the rasterizers receive the primitive in screen space, slice it to fit their tile,
and apply a rasterization routine based on its type. For each of the pixels, a depth test
is performed, discarding fragments that are further away. Then a fragment shader is
applied and the result written to the framebuffer after blending.

Depth testing and blending can be disabled by clearing the camera�s
enabledepth and enableblend parameters, respectively. An experi
mental A-buffer implementation is also included for order-independent ren
dering of transparent primitives (OIT). If enabled, by setting the camera�s
enableAbuff parameter, fragments will be pushed to a depth-sorted
stack, waiting to be blended back-to-front and written to the framebuffer at
the end of the job.

1

2

&

n

Framebuf

rasterizer 1

rasterizer 2

&

rasterizer n

Figure 4: Raster task scheduling.

September 9, 2024



 6 

4. Frames of reference

Frames are right-handed throughout every stage.

p
bx

by

bz

Figure 5: Example right-handed rframe.

5. Viewports

A viewport is a sort of virtual framebuffer, a device that lets users configure the
way they visualize a framebuffer, which changes the resulting image(6) after a call to its
draw or memdraw methods. So far the only feature available is upscaling, which
includes user-defined filters for specific ratios, such as the family of pixel art filters
Scale[234]x, used for 2x2, 3x3 and 4x4 scaling respectively[SCALE2x]. Users control it
with calls to the viewport�s setscale and setscalefilter methods.

Framebuf

p
bx

by

Figure 6: Illustration of a 3:2 viewport.

References

[1] https://www.scale2x.it/

[2] Thomas W. Crockett, �Design Considerations for Parallel Graphics Libraries�, NASA
Langley Research Center, Contract Nos. NAS1−18605 and NAS1−19480, June 1994

[3] Thomas W. Crockett, �Parallel Rendering�, NASA Langley Research Center, Contract
No. NAS1−19480, April 1995

[4] Thomas W. Crockett, �Beyond the Renderer: Software Architecture for Parallel
Graphics and Visualization�, NASA Langley Research Center, Contract No. NAS1−
19480, December 1996

[5] Tomas Akenine-Möller et al, �Real-Time Rendering�, 4th edition, Taylor & Francis,
CRC Press, 2018

[6] James F. Blinn, Martin E. Newell, �Clipping Using Homogeneous Coordinates�,
SIGGRAPH ’78: Proceedings, August 1978, pp. 245−251

September 9, 2024



 7 

[7] �GPU Gems� series

[8] �Graphics Gems� series

[9] Ian Stephenson, �Production Rendering: Design and Implementation�, Springer,
2005

[10] Paul S. Heckbert, �Survey of Texture Mapping�, IEEE Computer Graphics and
Applications, Nov. 1986, pp. 56−67

[11] Paul S. Heckbert, �Fundamentals of Texture Mapping and Image Warping�,
University of California, Berkeley, Technical Report No. UCB/CSD−89−516, June
1989

[12] Robert L. Cook, Loren Carpenter, Edwin Catmull �The REYES Image Rendering Archi
tecture�, ACM Transactions on Computer Graphics, Vol. 21, No. 4, July 1987

[13] Bruce J. Lindbloom, �Accurate Color Reproduction for Computer Graphics Applica
tions�, ACM Transactions on Computer Graphics, Vol. 23, No. 3, July 1989

September 9, 2024


