
libgraphics: Design and Implementation

Rodrigo G. López
rgl@antares−labs.eu

ABSTRACT

Libgraphics is a 3D computer graphics library that provides a way to
set up a scene, fill it up with a bunch of models (with their own meshes
and materials), lights and cameras, and start taking pictures at the user
request. It implements a fully concurrent retained mode software ren
derer, with support for vertex and fragment/pixel shaders written in C
(not GPU ones, at least for now), and featuring a z-buffer, front- and
back-face culling, textures and skyboxes, directional and punctual lights,
tangent-space normal mapping, among other things.

Introduction

Write the intro last.

1. The scene

struct Scene
{

char *name;
Entity ents;
ulong nents;
Cubemap *skybox;

void (*addent)(Scene*, Entity*);
void (*delent)(Scene*, Entity*);

};

A scene is a container, represented as a graph, that hosts the entities that make up
the world. Each of these entities has a model made out of a series of meshes, which in
turn are made out of geometric primitives (only points, lines and triangles are sup
ported). Each model also stores a list of materials.

August 24, 2024



 2 

Scene

Entity

Model

Mesh

Primitive

Material

Figure 1: The scene graph.

1.1. Entities

struct Entity
{

RFrame3;
char *name;
Model *mdl;

Entity *prev, *next;
};

Entities represent physical objects in the scene.

1.2. Models

struct Model
{

Primitive *prims;
ulong nprims;
Material *materials;
ulong nmaterials;

};

1.3. Meshes

1.4. Primitives

struct Primitive
{

int type;
Vertex v[3];
Material *mtl;
Point3 tangent; /* used for normal mapping */

};

1.5. Materials

August 24, 2024



 3 

struct Material
{

char *name;
Color ambient;
Color diffuse;
Color specular;
double shininess;
Texture *diffusemap;
Texture *normalmap;

};

2. Cameras

3. The renderer

The renderer is the core of the library. It follows a retained mode model, which means
that the user won�t get a picture until the entire scene has been rendered. Thanks to
this we can also clear and swap the framebuffers without their intervention, they only
need to concern themselves with shooting and �developing� a camera.

It�s implemented as a tree of concurrent processes connected by Channels�as seen in
Figure 2�, spawned with a call to initgraphics, each representing a stage of the
pipeline:

3.1. renderer

The renderer process, the root of the tree, waits on a channel for a
Renderjob sent by another user process, specifying a framebuffer, a scene, a camera
and a shader table. It walks the scene and sends each Entity individually to the enti
typroc.

Renderjob renderer entityproc

tiler 1

tiler 2

&

tiler n

rasterizer 1

rasterizer 2

&

rasterizer n

Figure 2: The rendering graph for a 2n processor machine.

3.2. entityproc

The entityproc receives an entity and splits its geometry equitatively among the
tilers, sending a batch for each of them to process.

August 24, 2024



 4 

3.3. tilers

Next, each tiler gets to work on their subset of the geometry, potentially in
parallel�see Figure 3. They walk the list of primitives, then for each of them apply the
vertex shader to its vertices (which expects clip space coordinates in return), perform
frustum culling and clipping, back-face culling, and then project them into the viewport
to obtain their screen space coordinates. Following this step, they build a bounding
box, used to allocate each primitive into a rasterization bucket, or tile, managed by one
of the rasterizers; as illustrated in Figure 4. If it spans multiple tiles, it will be copied
and sent to each of them.

tile 1

tile 2

&

tile n

Framebuf

rasterizer 1

rasterizer 2

&

rasterizer n

Figure 3: Per tile rasterizers.

3.4. rasterizers

Finally, the rasterizers receive the primitive in screen space, slice it to fit their tile,
and apply a rasterization routine based on its type. For each of the pixels, a depth test
is performed, discarding fragments that are further away. Then a fragment shader is
applied and the result written to the framebuffer after blending.

August 24, 2024



 5 

1

2

&

n

Framebuf

rasterizer 1

rasterizer 2

&

rasterizer n

Figure 4: Raster task scheduling.

4. Frames of reference

Frames are right-handed throughout every stage.

p
bx

by

bz

Figure 5: Example right-handed rframe.

5. Viewports

A viewport is a sort of virtual framebuffer, a device that lets users configure the
way they visualize a framebuffer, which changes the resulting image(6) after a call to its
draw or memdraw methods. So far the only feature available is upscaling, which
includes user-defined filters for specific ratios, such as the family of pixel art filters
Scale[234]x, used for 2x2, 3x3 and 4x4 scaling respectively[REF01]. Users control it
with calls to the viewport�s setscale and setscalefilter methods.

August 24, 2024



 6 

Framebuf

p
bx

by

Figure 6: Illustration of a 3:2 viewport.

References

[REF01]https://www.scale2x.it/

August 24, 2024


